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Objective

» The project targets to develop and validate a novel
Data-Enhanced Hierarchical Control (DEHC)
architecture for distribution grids with high PV
penetration.

» The DEHC architecture represents a hybrid approach
of ADMS-based centralized controls, grid-edge
controls and distributed controls for PV inverters.

DEHC features:
» ADMS-centered operations,
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» Synergistic ADMS-grid edge operations,
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» PV fast-regulation capabilities, :

Legend
. . . ===DataFlow — Control Signal &PV inverter ADMS  Advanced Distribution Management System
> Com'prehenswe situational awareness, cybersecured =~ _met © o B S Dy o e
and intero pe rable. % Capacitorbank (Cap) Varentec Device S ombiaie

© sensor @ Relay/Recloser (D) AMI wwo VoItage-VAR-WanOS?imizalion

SOLAR ENERGY
TECHNOLOGIES OFFICE
U.S. Department Of Energy



Key Activities

» Period 1: Development and validation of co-simulation
framework of DEHC architecture.

» Period 2: Hardware-in the-loop validation of DEHC
architecture in lab and real-time simulation environment

» Period 3: Field validation on selected distribution feeders
with DEHC architecture components and control
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Co-simulation Framework for Developing and Evaluating the DEHC Architecture
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Feeder voltages with PV Regulation (RT-OPF)
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Following simulation scenarios are planned to be carried out

Category

Description

Planned Scenarios

RTAC+ADMS required?

4 (high PV scenario * 2 load profiles * 2

Baseline, S1: No ENGOs, No RTOPF . No
PV profiles)
S2: ENGOs with fixed voltage setpoint
) 4 (same as S1) No
Category 1: Evaluate the performance of |in OpenDSS
ADMS and ENGO
S3: No ENGOs, No RTOPF, ADMS
4 (same as S1) Yes
controls LTC only to do CVR
S4: Enable ENGOs 4 (same as S1) Yes
Category 2: Evaluate the performance of 12 (3 PV inverter control intervals * 4
S5: Enable RTOPF . No
RTOPF scenarios as above)
Category 3: Evaluate the performance of
gory P S6: Combine S4 + S5 4 (same as S1) Yes

ADMS, ENGO, and RTOPF

Note: 2 load profiles - Peak day, Min. load day
2 PV profiles - Intermittent day, Moderate day
3 PV inverter control intervals - 1 sec, 5 sec, 10 sec
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Hardware in the Loop Setup

UDP/TCP

“+—— power

<+—— analog

«——— cosimulation
<—— comms

*—> comms for ENGO

PC
RT-OPF am cim
(Python code) i/f
Translator
DNP3 (SCADA

measurements, control
setpoints & feedback)

| ]

DNP3 (SCADA meter
measurements)

OpenDSS Model:
Feeder + PV + BESS

Simulated DER
controller for PVs
(Python code)

Part of Feeder Model built
Testbed in Opal-RT
coordinator
o
1-ph| \Kl-ph
1-p

| 4—@ Opal-RT Dy.P3 servers

Grid Sim

Beagleboard

Modbus (PV setpoints)

3ph

12 kVA

Inverter

Grid Sim (RS90)
(Chroma)

Proprietary
(setpoints and
feedback)

ENGO #1

ENGO #2

PV

NREL | 1

SOLAR ENERGY
TECHNOLOGIES OFFICE
U.S. Department Of Energy



HIL Test Setup
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HIL Test Setup
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Interoperability Testing

________________________________________________________

Varentec GEMS

Schneider ADMS

O Interoperability Plan
Scope

Centralized RT-OPF
Controller

PV Inverters

________________________________________________________

DEHC Architecture Interoperability Plan Scope
Interoperability testing in DEHC architecture:

* Local RT-OPF controller to PV Inverters
e SE ADMS to Centralized RT-OPF Controller
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Cybersecurity Evaluation
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Field Deployment — Xcel Energy

Englewood Bank 2

. All devices installed in preparation for IVVO except for
the bellwether meters and small subset of ENGOs.

. Testing should be completed before the end of May
and IVVO should begin running in closed loop at that
time.

. Bellwether meters should be installed in November of
2019 but will have a limited scope and only be
installed on residential and some commercial
customers.

. Upgraded Load Tap Changer(LTC) control installed at
substation transformer. SEL 2411 allows the ADMS to
issue a set point which the LTC with regulate the
secondary voltage to.

. 18 primary capacitor banks installed.
. 122 ENGOs installed — 22 additional ENGOs to be
installed.

. WiMAX network installed and functional, WiSUN mesh

network is planned for the coming months. SOLAR ENERGY
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Field Deployment — Xcel Energy

East Bank 1

. Device installations should be completed in November 2019 and ¢
ADMS deployment there will follow in late Q2/early Q3 of Fiscal
Year 2020 (March or April 2020).

. The bellwether deployment at EAST will likely not be in time for !
the Eco-ldea project as their deployment was pushed out to

2021.
. Upgraded LTC control to be installed in November 2019.
. 10 primary capacitor banks installed.

. 56 ENGOs planned for installation in coming months.

. WiMAX network installed and functional, WiSUN mesh network
at East#1 is currently a little lower on the schedule, it will be
ready for the ADMS enablement of that substation area in
March/April 2020.

GEMS

Xcel Energy’s instance of GEMS will go live in September 2019. The
deployed ENGOs will have set points issued remotely at that time.

In the next quarter, the team will also start developing the field test
plan that will be executed in BP3.
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Key Outcomes and Impacts

. Validated novel hybrid control architecture
. Reliable and secure grid operation for high PV grids

. Interoperable interfaces for integration of system-level
controls on the Utility Enterprise Bus

. Laboratory and field validation of hierarchical controls
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Model Updates — Load Modeling

* Historical SCADA data was received from Xcel at 1-hour resolution

e Minimum load of 11.48 MW was observed at 15 hours on May 13, 2018
* Peak load of 36.6 MW was observed at 16 hours on July 10, 2018

* Voltage-dependent load model
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Model Updates — High PV Scenario

* New high-PV scenario is created with updated criteria
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Scenario Results — S1, Baseline

* S1, Baseline: No ENGOs, No RTOPF

* Peak day, low-PV

* Impact of PV intermittencies are observed in max. voltage
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Scenario Results — S1, Baseline

S1, Baseline: No ENGOs, No RTOPF

Peak day, low-PV scenario, Intermittent load profile
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S2 — Individual ENGO Powers
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S2 — Individual ENGO Voltages
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S2 — Individual ENGO Powers

* Similar observations are made in this scenario as well
* Thatis, ENGOs provide voltage boost by injecting reactive

power into the system
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